Weighted Friedrichs inequalities in amalgams

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Friedrichs – Poincaré - type inequalities ✩

Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the ine...

متن کامل

Discrete forms of Friedrichs ’ inequalities in the finite element method

Auxihary theorems allowing to extend the theory of curved finite éléments introduced m [2], [3] to the case ofboundary value problems with varions stable and unstable boundary conditions are proved As an example the problem of bending of thin elastic plates is considered Résumé — OM démontre des théorèmes auxiliaires qui permettent d'étendre la théorie des éléments finis courbes présentée dans ...

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains

We study geometrical conditions guaranteeing the validity of the classical GaffneyFriedrichs estimate ‖u‖H1,2(Ω) ≤ C ( ‖du‖L2(Ω) + ‖δu‖L2(Ω) + ‖u‖L2(Ω) ) (0.1) granted that the differential form u has a vanishing tangential or normal component on ∂Ω. Our main result is that (0.1) holds provided Ω satisfies a suitable convexity assumption. In the Euclidean setting, a uniform exterior ball condit...

متن کامل

On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne

The equivalence between the inequalities of Babuška–Aziz and Friedrichs for sufficiently smooth bounded domains in the plane has been shown by Horgan and Payne 30 years ago. We prove that this equivalence, and the equality between the associated constants, is true without any regularity condition on the domain. For the Horgan–Payne inequality, which is an upper bound of the Friedrichs constant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1993

ISSN: 0011-4642,1572-9141

DOI: 10.21136/cmj.1993.128404