Weighted Friedrichs inequalities in amalgams
نویسندگان
چکیده
منابع مشابه
On Friedrichs – Poincaré - type inequalities ✩
Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the ine...
متن کاملDiscrete forms of Friedrichs ’ inequalities in the finite element method
Auxihary theorems allowing to extend the theory of curved finite éléments introduced m [2], [3] to the case ofboundary value problems with varions stable and unstable boundary conditions are proved As an example the problem of bending of thin elastic plates is considered Résumé — OM démontre des théorèmes auxiliaires qui permettent d'étendre la théorie des éléments finis courbes présentée dans ...
متن کاملSome weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملDirichlet integrals and Gaffney-Friedrichs inequalities in convex domains
We study geometrical conditions guaranteeing the validity of the classical GaffneyFriedrichs estimate ‖u‖H1,2(Ω) ≤ C ( ‖du‖L2(Ω) + ‖δu‖L2(Ω) + ‖u‖L2(Ω) ) (0.1) granted that the differential form u has a vanishing tangential or normal component on ∂Ω. Our main result is that (0.1) holds provided Ω satisfies a suitable convexity assumption. In the Euclidean setting, a uniform exterior ball condit...
متن کاملOn the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne
The equivalence between the inequalities of Babuška–Aziz and Friedrichs for sufficiently smooth bounded domains in the plane has been shown by Horgan and Payne 30 years ago. We prove that this equivalence, and the equality between the associated constants, is true without any regularity condition on the domain. For the Horgan–Payne inequality, which is an upper bound of the Friedrichs constant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1993
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1993.128404